
Conservativity of Equality Reflection over
Intensional Type Theory

Martin Hofmann

Fachbereich Mathematik
TH Darmstadt

Schlof~gartenstralie 7
D-64289 Darmstadt

Germany

Abs t rac t . We investigate the relationship between intensional and ex-
tensional formulations of Martin-LSf type theory. We exhibit two prin-
ciples which are not provable in the intensional formulation: uniqueness
of identity and flmctional extensionatity. We show that extensional type
theory is conservative over the intensional one extended by these two
principles, meaning that the same types are inhabited, whenever they
make sense. The proof is non-constructive because it uses set-theoretic
quotienting and choice of representatives.

1 Extensional and intensional type theory

A distinctive feature of Martin-LSf's type theories is the presence of two notions
of equality: judgemental equality and propositional equality. Judgemental equal-
ity applies to both terms and types and is written as a judgement F ~- M = N : c~
and / " f- o- = r type. The inference rules for these judgements include congruence
rules for all the type and term formers and computational rules like the/~ and
possibly the q-rule for function types. The present study applies to dependent
type theories with at least H-types, Z-types, identity types, and natural num-
bers (to have a base type). For simplicity we assume an q-rule for the H-types.
In [6] we also deal with the absence of the y-rule.

Propositional equality only applies to terms and is itself a type (of equality
proofs). Tha t is, we have a type Ida(M, N) in context F whenever M, N : ~r.

F ~ - e t y p e F ~ - M : ~ I ' ~ - N : r

1" I- Ida (M, N) type
ID-FORM

The formulation of equality as a type allows internal reasoning about equality, for
example a propositional equality can be established by induction (N-elimination)
so as to show z : N ~- IdN(z, SucX(O)) true where SueZ(O) means the z-fold ap-
plication of the successor function to 0 defined by N-elimination. Here and in
the sequel we write F ~- ~ true to mean F ~- cr type and F f- M : ~r for some
term M. Type annotations to Id and other type and term formers may be left
out where appropriate.

154

Propositional equality is introduced via reflexivity, i.e. if M : ~ then we have
a canonical element Refla(M): Ida(M, M).

FF M :~r

1" F Refla (M): Ida (M, M)
ID-INTRO

This, together with the congruence rules for judgemental equality gives that
M = g : ~r always entails that Ida(M, N) is inhabited (namely by Refla(M)).

Now one would like to express that this is the only inhabitant of the identity
type, i.e. one might wish the rule

r ~- P: Ida (M, N)
[D-UNI

F F P = Refla(M): Ida(M,N)

However, for this rule to "type-check" we need to identify propositional and
judgemental equality. This is achieved by the equality reflection rule

I" F P : Ido (M, N) REFLECTION
F F M = N : G

This axiomatisation of propositional equality is the one used in Martin-Lhf's
earlier works [8] and in many proof-theoretic studies on his type theories. The
type theory based on this axiomatisation is called extensional type theory, TTE
for short, because by rule REFLECTION the judgemental equality becomes ex-
tensional. For instance, since as argued above x:N F IdN(x, Suc~(O)) true we
obtain by REFLECTION that x:N F x = Suc~(O) : N which clearly is an exten-
sional equality.

Equality reflection (REFLECTION) is intuitively appealing because it is valid
in most models, in particular in the set-theoretic interpretation of type theory,
and also because it leads to a single notion of equality in type theory. A serious
disadvantage of extensional type theory is that judgemental equality and as a
consequence type checking, i.e. the question whether a given judgement F F
M = N : o- or F F M : G holds, are undecidable. Intuitively, this is so, because a
syntax-directed decision procedure for these judgements would have to "guess"
the proof term P in the premise to rule REFLECTION. As any H1 ~ statement
in Heyting arithmetic can be encoded as a certain identity type, inhabitation
of identity types is at least as complex as provability of such statements. A
rigorous proof of undecidability using recursively inseparable sets is given in [6].
Therefore, extensional type theory is not really in line with the Curry-Howard
isomorphism because terms do not correspond to proofs, only typing derivations
do. Other shortcomings of extensional type theory are that in the presence of a
universe U non-normalising terms become typeable in inconsistent contexts (for
example the fixpoint combinator may be typed in d: U,p: Idu(d, d--+ d)) and--
of a more aesthetic nature--that rule REFLECTION does not fit into the pattern
of introduction and elimination rules. See, however, [10] for a formulation of
REFLECTION as a n ~?-like rule.

155

Probably for these reasons Martin-Lhf has later on restricted judgemental
equality to definitional expansion (definitional equality) and replaced rules ID-
UNI and REFLECTION by his famous identity elimination rule which is motivated
by the view of the identity type as an inductive family with sole constructor Refl.

The use of this elimination principle is described in detail in [9]. It is shown
there, how it entails that propositional equality satisfies a Leibniz principle, that
is if x: ~r F r[x] type and P : Idc,(M1, M2) and N : rIM1] then one can construct a
term Subst o,r (M1, M2, P, N) : rIM2]. This Leibniz principle in turn allows one to
show that propositional equality is an equivalence relation, i.e. if P : Id(M1, M2)
then we can construct Sym (P) : Id(M2, M1) and for Q : Id(M2, M3) we get
Trans (P, Q) : Id(M1, M3). Furthermore, it entails that Id is respected by all
functions, i.e. if U : a --+ r then we find Resp (U, P) : Id(F M1, F 312).

Surprisingly, the intensional and extensional formulations of type theory have
never been compared in the literature (to the best of our knowledge). This is the
purpose of the present work. We first identify two principles which are provable
in the extensional theory, but not in the intensional one and then embark on the
proof that extensional type theory is conservative over the intensional one with
these two principles added. We only sketch the formal argument here and refer
the reader to [6] for a detailed proof.

We use a monomorphic presentation of type theory, i.e. terms with explicit
type annotations, as in [9, Part III], however, without using a so-called Logical
Framework, see also Sect. 3.

The material in this paper is mostly taken from the author's PhD dissertation
[6]. However, some simplifications (in particular the assumption of q-conversion
for H-types) have been made, and the example in Section 2 is new.

1.1 F u n c t i o n a l e x t e n s i o n a l i t y

Suppose that F t- U, V : Hx: m'r and / ' , x: c~ ~- P : Idr (U x, V x). In extensional
type theory we can conclude _P b- Idll=:~.~(U, V) true using REFLECTION, the
congruence rule for A, and ~/. In intensional type theory this is, however, in
general not possible. A formal semantic argument for this may be found in [10];
intuitively one may argue that otherwise in the special case where F is empty
we could deduce Idg=:a.r(U, V) true (from the existence of P above), but an
identity type in the empty context can only be inhabited by a canonical element
Refl(-), so U and V must be definitionally equal, which does not follow from
the existence of the proof P which may have been obtained using induction. To
achieve this principle called functional extensionality we add to intensional type
theory a family of constants Ext~,,r (U, V, P) obeying the rule

1" ~- U, V : H x : ~r.r
F,x:c~ F P: IdT(U x ,V x)

r (v, v, P): Idn :o.,(U, V)
EXT-FORM

t56

1.2 Uniqueness of ident i ty

Let M, N : a and P, Q : Ida(M, N) be two proofs that M, N are propositionally
equal. In extensional type theory it is an immediate consequence of ID-UNI that
Idxd,(M,N)(P,Q) true. Streicher has conjectured in [10] that this is in general
not the case in intensional type theory and in [7] this has actually been proved
by a semantic argument. So again, we are led to extend our axiomatisation of
propositional equality in an intensional setting. It turns out that it is enough to
consider the case where Q is in canonical form so that we introduce a family of
constants

r ~- M : rr t ~ F- P : Ida (M, M)

F F" IdUnia(M,P): Idzd~(M,M)(P, Refla(M))
ID-UNI-I

to achieve uniqueness of identity. Axioms like ExT-FORM and ID-UNI-I intro-
duce non-canonical elements of all types in the empty context (not only of iden-
tity types). The constant ID-UNI-I can be endowed with an obvious reduction
rule which eliminates all of its instances in closed terms of basic type. Things
are more serious with EXT-FORM since no reasonable reduction rule for these
constants is known. However, in [5] we discuss a possibility for eliminating these
non-canonical elements by translating the identity type into suitable equivalence
relations. For the present work we shall simply regard Ext and IdUni as families
of constants.

1.3 The intensional t y p e t heo ry TTs

It is also noticed in [10] that in the presence of uniqueness of identity the elim-
ination operator for Id can be defined in terms of its particular instance Subst
mentioned above. Therefore, we shall take Subst as a primitive and define inten-
sional type theory (TTz for short) as dependent type theory with rules ID-FORM,
ID-INTRO, EXT-FORM, ID-UNI-I, and the following two rules for Subst.

r P : ida (M1, M2)

1" t- Subst a,T (M1, M=, P, N) : r[M2]
LEIBNIZ

F ~- Subst a,r (M, M, Refla (M), N) : riM] LEIBNIZ-COMP
I" F Subst a,r(M, M, Refl~(M), N) = ~ ' : v[M]

Recall that TTE refers to extensional type theory defined by rules ID-UNI and
REFLECTION above. Recall also that from Subst one may define operators Sym,
Trans, and Resp, witnessing that Id is an equivalence relation compatible with
function application.

In order to distinguish the intensional from the extensional type theory we
write F-t and t-~ for the two respective judgement relations.

157

The operators of TTz are definable in TTE, for example Subst is simply the
identity in TTE. More formally, we can define a "stripping map" I - I by

ISubst a,r(M1, M2, P, N)I :-- INj
IIdUni a(M, P)I := Refl~dl.l(IMI,IMI)(ReflIGl(IMI))
[Exto,~(U, V, P)l := ReflII=:lol.l~l(IUI)
homomorphically extended to all other terms, types, contexts, and judgements

Notice that F = IF] if F does not contain Subst, Ext, or IdUni. This mapping
enjoys the following trivial soundness property

P r o p o s i t i o n I If F t-z J then IF] t-E IJI for all contexts F and judgements J.

2 Conservativity of TTE over TTI

We are now interested in a converse of the above proposition; more precisely, we
shall establish the following conservativity property.

T h e o r e m 2 If F ks ~r type and jFJ ~-E M : Ic~[for some M then there exists
M' such that F ~-s M' : ~r.

Before sketching the proof of this theorem we shall illustrate its strength by an
example suggested by Thomas Schreiber. The crux of this example is to show
how the lack of equality reflection in TTI can be inconvenient when one wants to
actually program with dependent types rather than use type dependency merely
to express constructive predicate logic.

We assume a type Bool with two canonical elements true : Bool and false :
Bool. We use the following slightly unconventional elimination rule which is
expressible in terms of the usual one, see [9, Ch. 21]

F, b: Bool I- cr type
F F- B : Bool
17, p: Idsool(B, true) b T : or[true~b]
F,p: Idsoot(B, false) k E : o'[false/b]

BOoL-E
F F- if'[b:BooJ]a (B, [p: IdBoo,(B, true)]T, [p: IClBoo,(B, false)]E) : cr[B/b]

Notice that the free variables b in ~ and p in T, E, respectively, become bound
in the if t expression. This elimination operator comes with the following two
computation rules:

F ~-if'[b:Boo0o (true, [p: IdSoo,(true, true)]T, [iv: IdBoo,(true, false)]E): c[true/b]

/ ' J- if'[b:BooOa (true, [p: IdBool(true; true)]T, [p: IdBool(true, false)]E) --
T[ReflBool(true)/p]: or[true/b] BOOL-C-T

F ~- if'[b:Boo0a (false, [p: IdBool(false, true)]T, [p: IdBool(false, false)]E) : (r[false/b]

F F if'[b:Bool]a(false, [p: IdBoot(false, true)]T, [p: IdBoo,(false, false)]E) --
E[Reftsoo,(false)/p]: [false/b] BooL-C-F

158

Suppose that we are given a type Loc of locations together with an equality
function eq : Loc -+ Loc -+ Boot and a proof term

eq_correct : I I l , l': koc.tdLoc(1, l') ++ Idsool(eq I 1 ~, true)

witnessing that eq is indeed an equality function on Loc. The terms eq and
eq_correct may either be implemented or declared in some ambient context
F. Furthermore, we assume a type Data depending on Loc, i.e. we have F ~-
Data(M) type whenever/~ F- M : Loc. We make the definition

Store = I I l : Loc.Data(l)

and our aim is to find a term

update : Hl0: Loc.Hd: Data(10).]-Is: Store.Store

which given lo, d, s returns a store whose value at l0 equals d and (s l) at 1 r 10.
In TTE we can easily construct such an update function by

update =)~10: Loc.~d: Data(10).),s: Store.hi: Loc.
ifl[b:BooqData(1) (eq (lo, l)

[p: IdBool(eq(lo, l), true)]d,
[p: Z Boo,(eq(10, l), fal,e)](l))

The important point here is that in TTE we have Data(/0) = Data(1) in the pres-
ence of p: Id(eq(lo, 1), true) by virtue of eq_correct. Therefore, we have d: Data(1)
and the first branch of the if ~ expression type-checks.

Write

update_type = Hlo: Loc.Hd: Data(lo).1-Is: Store.Store

and for f: update_type

update_spec(f) =
(Hl0: Loc.Hd: Data(lo).Hs: Store.IdData(to)(f lo d s lo , d)) •
(IIIo: Loc.//d: Data(lo).IIl: Loc.(IdLor Io) -~ 2_) -+ IdD,t,(;)(f lo d 8 l , s l))

where .1_ is the empty type. We can readily establish

F I- E update_spec(update) true

using if' and equality reasoning.
Now assuming that Loc and Data already make sense in intensiona] type

theory we can apply the conservativity theorem to the type

-- 27f: update_type.update_spec(f)

giving us an update function in TTx which also satisfies update_spec. Coming
up with such a function is not too difficult, indeed we may choose

159

update'= A/o: Loc.Ad: Data(/o).As: Store.M: Loc.
ifl[b:Boo~Data(/) (eq (10, l) ,

~v: IdBoo,(eq(lo,/), true)]Subst Loc, Oata(/O, l , ((eq_correct lo 1).2 p) , d),
~: IdBoo,(eq(lo, 1), false)] (s 1))

where the projection .2 yields the +--part of eq_correct, hence the first argument
to Subst is of type Idkoc(lo, l). The conservativity theorem does not necessarily
give us this very update function, but we can also use it to obtain a proof of
correctness of the latter. To that end we consider the type

o" = update_spec(update')

We have = update_spec(update) so F t-E true and hence 1" FI cr true
giving us the desired correctness proof for our particular function update ~. Con-
structing such proof directly requires quite some effort as the function in question
contains an instance of Subst. In this case the author has been able to construct
such a proof using the Lego system. This revealed that the use of Ext can be
avoided here and that IdUni is only used for the particular type Loc. As ob-
served by Michael Hedberg IdUni is definable from Martin-LSf's elimination
rule for types with decidable equality (such as koc) so that this example can be
carried out in pure intensional Martin-LSf type theory without the additional
constants Ext and IdUni.

It was pointed out by one of the referees that in the presence of pattern-
matching like in ALF [1] the complicated equality reasoning in the example can
be avoided if one replaces eq and eq_correct by a single constant

eq ' : H1, l': Loc.IdLoc(I, l') + (IdLoc(l, l') -+ Z)

One may then define update by pattern matching over eq' (t, 10) and in the positive
case we may then assume that l and l0 are judgementally equal. It is not clear,
however, how this technique can be applied in general, in particular, the example
in [6] and briefly mentioned in Section 3 does not seem to be amenable to a simple
development using pattern-matching.

Proof of Thin. 2 (Sketch). The proof is based on two main ingredients. First, we
observe that a consequence of this conservativity property is that types c~ and
which are equal in TTE must be isomorphic in TTz. To see this consider the
type

p := Z f : ~ ~ # . ~ f - l : # _+ cr.
Id(Ax: Ax: • Id(A :

If }-E Icq = Ic~'l then IPl is inhabited by two instances of the identity function
together with two instances of reflexivity. So a proof of Theorem 2 must embody
a construction of these isomorphisms. Now the only way to deduce judgemental
type equalities in TTE is by using congruence rules and REFLECTION in the case
of type formers containing terms like the identity type. So we can compute these

160

isomorphisms directly by induction on the structure of any two types ~ and ~r'
without using conservativity in the first place.

The second ingredient is a general method for establishing conservativity
between type theories. Generalising from Thm. 2 we call an extension T ~ of
some type theory T conservative over T if whenever a type of T is inhabited in
T ~ then it is already inhabited in T.

P r o p o s i t i o n 3 Let T be a type theory and T ~ an extension of T. T ~ is conser-
vative over T if and only if there exists a model Q of T' , hence o f T , such that
the interpretation of T in this model is full (surjective).

Proof. Suppose that cr is a type of T such that cr is inhabited in T ~ by some term
M. The interpretation of M in Q yields a "semantic term" of the interpretation
of a in Q which by fullness gives a term of type cr in T. For the converse we let
Q be the term model of T ~

At this level of generality the argument is too informal so as to be of direct use.
It only serves us as a guideline which the reader is invited to bear in mind. The
theories T and T ~ are TTI and TTE, respectively, where a slight complication
results from the fact that TTE is not literally an extension of TTz, but that we
have an interpretation of one in the other, namely the stripping map. The role of
"models" is played by categories with families in the sense of Dybjer [2, 4] or any
other category-theoretic notion of model for type theory. For the purpose of this
abstract it suffices to know that such a structure provides domains of interpre-
tation for contexts, types, and terms 1, and comes with semantic type and term
formers operating on these semantic objects. An interpretation function can then
be defined which maps syntactic contexts, types, terms to their semantic com-
panions and translates syntactic type and term formers into the corresponding
semantic ones. Judgemental equality is then modelled by set-theoretic equality
of semantic objects. Factoring the syntax by judgemental equality yields a par-
ticular mode]: the term model The interpretation of the syntax in a some model
induces a unique structure preserving map from the term model to this model.
The model Q we use is a quotient of the term model of TTz by propositional
equality where in addition we identify types and contexts which are canonically
isomorphic in the sense described above, i.e. which become equal in TTE.

Let us now look at some of the details. In order to define the canonical
isomorphisms between types one also needs to consider isomorphisms between
contexts to get the inductive definition through. In order to specify those we
extend propositional equality to contexts and context morphisms (substitutions)
using Z-types. It turns out that for this extension the same combinators as for
ordinary propositional equality can be defined. Then by simultaneous induction
on contexts and types we construct possibly undefined "isomorphism candidates"
between any two contexts and types. That is, for contexts F, A we have a
(possibly undefined) context morphism (a I~]-tuple of terms) cor, a : Y -4 A

1 ... and substitutions~ but we gloss over this point here.

161

which if defined possesses an inverse up to propositional equality. For types
F ~'s c~ type, A F- I r type we have a (possibly undefined) term

r,x: r[cor, a]

which--if defined--is an isomorphism w.r.t, propositional equality. We use square
brackets to denote (generalised) substitution, i.e. if f : F -4 A and A F- ~r type
then F t- ~r[f] type and similarly for other judgements. The isomorphism be-
tween contexts of different length is always undefined and between contexts of
the same length it is obtained from the isomorphisrns between types. An iso-
morphism between types can only be defined if they share the same outermost
type former. In the case of]7 and Z-types the isomorphism is the obvious lifting
of the isomorphism for the respective components. Functional extensionality is
used to verify the isomorphism property in the case of / / - types . The interesting
case is where r and 7- are identity types. For simplicity we assume that they are
both in the same context and over the same type. I.e. let F ~-z M1, M~, N1, N2 : p
and put o" = Idp(M1, M2) and r = Idp(N1, N2). The isomorphism

F,p: Idp(M1, M2) Fz tyr, r,a,r : Idp(N1, N2)

is defined iff M1, N1 and M2, N2 are propositionally equal. In this case we pick
F ~z P1 : Idp(M1, NI) and F t-z P2 : Idp(M2, N2) and set

tyr, r, os[p] := Trans (Trans (Sym (P1) , P) , P~)

Notice that in this case ty is defined w.r.t, some arbitrary choice of these proofs
Pi. The isomorphism property is readily established using IdUni.

Having defined these isomorphisms we construct a model of TTE in which

- contexts are equivalence classes of contexts, two contexts being identified if
the isomorphism between them is defined,

- types in context [A]~ are equivalence classes of pairs (F, o') where F E [A]~,
and F Fz cr type, and two such pairs are identified if the corresponding
ty-isomorphism is defined,

- terms of type [(A, r)]~ are equivalence classes of triples (F, M,~r) where
(F, or) e [(A, r)]~, and F ~-I M : o', and two such triples (F, M, cr) and
(/7 I, N I, (r I) are identified if

F F- Ido,(tyr, r,,~,a,[M], M'[cor, r,]) true

i.e., if M and M ~ with suitably adjusted source and target are propositionally
equal in TTI .

We have used here the notation [-]~ for equivalence classes associated to a
representative.

Now we prove that this structure, which we call Q, does indeed form a model
of T T z and that in particular the required semantic type and term formers are
given by applying their syntactic companions (in TTz) to equivalence classes.
Here Ext and IdUni are used to show that various settings are independent of

162

the choice of representatives and thus are well-defined on equivalence classes. For
example, if [(/~, M, cr)]~ and [(F', N', o")]~ are two semantic terms of (semantic)
type [(A G)]~ then we define the associated identity type as the equivalence
class of the pair of F and

F F Id~,(tyr,r,G,o,[M], M'[cor, r,]) type

Since we have defined equality of terms in Q precisely as inhabitedness of this
type the rule REFLECTION is valid in Q. Uniqueness of identity is required here
to show that this setting is independent of the chosen representatives (F, M, ~r)
and (F', N', G').

The above can be summarised by the following diagram of structure preserv-
ing maps between models.

q

TT/ , TTE
I-I

where TTI and TTz refer to the term models of the respective type theories.
[[-]]z and i-lIE denote the interpretations of TTz and TTE in Q, which being
a model for TTE also models TTz. Finally, [-]~ : TTI --+ Q is the projection
map associating equivalence classes which is structure preserving by definition
of Q.

By induction on derivations or--more elegantly--by an initiality argument
we find that all three structure preserving maps from TTI to Q are equal, more
precisely, we have

[-]~ : [-]1 = [--]E ~ I - I (1)
Intuitively, we can now argue that the interpretation of TTz in Q is surjective
because we have characterised it as the projection associating equivalence classes
and then apply Prop. 3. More formally, suppose that f t-z o" and Ill t-S M : IGI.
Let iMps = [(f ' , M', G')]~ be the interpretation of M in Q. By definition, we
have F ' FI M' : W. Moreover, by Eqn. 1 we find

It]~ : I [I r l]b : [r%

and
[(_r', o-)]. : [l (r , o-)lib : [(r ' , o3]~

This in turn implies that cop,r, and tyr,r, ~,,o, are defined. Therefore, we have

P F I ty- lr , r,,,,a,[M'[cor,r,]] : G

giving the desired inhabitant of o" in TTz. []
We remark that we can even show that the stripping of the thus constructed

inhabitant of c~ is equal to M in TTE by showing that the stripping map respects
the equality in Q and thus lifts to a structure preserving map from Q to TTE
which again by initiality must be a left inverse to [--~E" We refer to [6] for details.

163

3 D i s c u s s i o n

Although relatively complex, the described method is fairly robust w.r.t, exten-
sions of the type theory. For it to be extensible to a new type former it is enough
that this type former admits an action on propositional isomorphisms. In [6] we
demonstrate this by adding quotient types and a universe. We remark, however,
that this condition is not met in the presentation of type theory using the Logi-
cal Framework in the sense of [9, Part III]. The reason is that there we can have
variables of type Set --+ Se t which act as completely unspecified type formers.
Nevertheless, it is plausible that Thin. 2 continues to hold in this case. A possible
proof could use a one-step definition of the isomorphism candidates by which
for example the isomorphism tyr, r,a, r would be defined iff there exists a context
A, a type p, and context morphisms f , g : F -+ A such that F }-z cr = Pil l ,
F }-I r = pig], and f, g are (component-wise) propositionally equal. We leave
the details to a future paper.

We also point out the non-constructive nature of the proof. Not only has the
axiom of choice been used in the definition of the canonical isomorphisms co and
ty; more seriously the interpretation of TTE in Q associates equivalence classes
to contexts, types, and terms. In order to get an inhabitant of type ~r in the proof
above we must arbitrarily choose a representative of the corresponding class.
We have done so implicitly by writing [[M]] E = [(F/, M', ~')]~. So the present
proof does not directly give rise to an algorithm which effectively computes an
inhabitant of tr from a derivation of Io-I true in TTz. Now such algorithm trivially
exists by Markov's principle, that is we simply try out all possible terms and
derivations and from the non-constructive proof of existence we know that this
search always succeeds. But of course, one would like a more efficient algorithm
which makes use of the given derivation in TT~. It is, however, not clear whether
the described argument gives rise to one such. An idea would be to carry out the
construction of Q in some "setoid model" where quotients come with a canonical
choice of representatives. This is, however, not possible using a semantics which
interprets judgemental equality as set-theoretic extensional equality as we have
done.

It appears that a constructivisation of the result could give rise to tactics
facilitating theorem proving in TTz, the idea being that parts of a proof or
program development could be carried out in TTE. The resulting derivation
would then be automatically translated into TTI. In [6] we give a proof in TTE
of a theorem of Mendler's stating that the dependent sum (Z) preserves limits of
~v-chains. Although the proof in TTE is relatively straightforward it was despite
considerable effort so far not possible to obtain a fully formal development in
TTI. The reason was that in this case one has to prove a property about a
term which contains instances of Subst inside a primitive recursion over natural
numbers rather than just booleans as in the case of the update function above.
Given sufficient time and energy one could certainly push this proof through,
but a systematic treatment based on the conservativity result would seem to
save much work in such cases.

We remind the reader that the conservativity result applies to intensional

164

type theory with functional extensionality and uniqueness of identity added.
Another issue is the conservativity of the latter two over pure intensional type
theory or rather the characterisation of those types and contexts for which they
are conservative. This question remains unanswered and is left for future re-
search. A brief discussion of the topic may be found in [6].

Judgemental equality has played a minor role in the present proof and it
appears that the whole development would go through if TTI was replaced by a
type theory without judgemental equality at all and rules like t3 or LEIBNIZ-
COMP replaced by corresponding constants of identity types in the style of
IDUNI. The construction of the model Q would remain unchanged since propo-
sitionally equal objects are identified in Q, some care has to be taken, however,
with the extension of propositional equality to contexts.

This generalisation would also answer affirmatively the question of conser-
vativity of the original TTI over this new type theory without judgemental
equality.

Acknowledgement. I wish to thank Thomas Streicher and the anonymous referees
for suggesting improvements of an earlier draft.

References

1. Thorsten Altenkirch, Veronica Gaspes, Bengt NordstrSm, and Bj6rn yon Sydow.
A User's Guide to ALF. Chalmers University of Technology, Sweden, May 1994.
Available on the WWW: file://ftp.cs.chalmers.se/pub/users/alti/alf.ps.Z.

2. Peter Dybjer. InternM type theory. In Proc. BRA TYPES workshop, Torino, June
1995, Springer LNCS, 1996. To appear.

3. Solomon Feferman. Theories of finite type. In Jon Barwise, editor, Handbook of
Mathematical Logic, chapter D.4. North-Holland, 1977.

4. Martin Hofmann. Syntax and sematnics of dependent types. In P. Dybjer and
A. M. Pitts, editors, Semantics and Logics of Computation. Cambridge University
Press, 199?

5. Martin Hofmazm. Elimination of extensionality for Martin-L~f type theory. In
H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs. Springer,
1994. LNCS 806.

6. Martin Hofmann. Extensional Concepts in lntensional Type Theory. PhD thesis,
Univ. of Edinburgh, 1995.

7. Martin Hofmann and Thomas Streicher. A groupoid model refutes lmiqueness of
identity proofs. In Proceedings of the 9th Symposium on Logic in Computer Science
(LICS), Paris, 1994.

8. Per Martin-L6f. Intuitionistic Type Theory. Bibliopolis.Napoli, 1984.
9. B. NordstrSm, K. Petersson, and J. M. Smith. Programming in Martin-LSf's Type

Theory, An Introduction. Clarendon Press, Oxford, 1990.
10. Thomas Streicher. Semantical Investigations into Intensional Type Theory. Habil-

itationsschrift, LMU M/inchen, 1993.

