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Abs t rac t .  We investigate the relationship between intensional and ex- 
tensional formulations of Martin-LSf type theory. We exhibit two prin- 
ciples which are not provable in the intensional formulation: uniqueness 
of identity and flmctional extensionatity. We show that extensional type 
theory is conservative over the intensional one extended by these two 
principles, meaning that the same types are inhabited, whenever they 
make sense. The proof is non-constructive because it uses set-theoretic 
quotienting and choice of representatives. 

1 Extensional and intensional type theory 

A distinctive feature of Martin-LSf's type theories is the presence of two notions 
of equality: judgemental equality and propositional equality. Judgemental  equal- 
ity applies to both terms and types and is written as a judgement F ~- M = N : c~ 
and / "  f- o- = r type. The inference rules for these judgements include congruence 
rules for all the type and term formers and computational rules like the/~ and 
possibly the q-rule for function types. The present study applies to dependent 
type theories with at least H-types, Z-types, identity types, and natural num- 
bers (to have a base type). For simplicity we assume an q-rule for the H-types. 
In [6] we also deal with the absence of the y-rule. 

Propositional equality only applies to terms and is itself a type (of equality 
proofs). Tha t  is, we have a type Ida(M, N) in context F whenever M, N : ~r. 

F ~ - e t y p e  F ~ - M : ~  I ' ~ - N : r  

1" I- Ida (M, N) type 
ID-FORM 

The formulation of equality as a type allows internal reasoning about equality, for 
example a propositional equality can be established by induction (N-elimination) 
so as to show z : N  ~- IdN(z, SucX(O)) true where SueZ(O) means the z-fold ap- 
plication of the successor function to 0 defined by N-elimination. Here and in 
the sequel we write F ~- ~ true to mean F ~- cr type and F f- M : ~r for some 
term M. Type annotations to Id and other type and term formers may be left 
out where appropriate. 
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Propositional equality is introduced via reflexivity, i.e. if M : ~ then we have 
a canonical element Refla(M): Ida(M, M). 

FF M :~r 

1" F Refla (M):  Ida (M, M) 
ID-INTRO 

This, together with the congruence rules for judgemental equality gives that 
M = g : ~r always entails that Ida(M, N) is inhabited (namely by Refla(M)). 

Now one would like to express that this is the only inhabitant of the identity 
type, i.e. one might wish the rule 

r ~- P:  Ida (M, N) 
[D-UNI  

F F P = Refla(M): Ida(M,N) 

However, for this rule to "type-check" we need to identify propositional and 
judgemental equality. This is achieved by the equality reflection rule 

I" F P : Ido ( M, N) REFLECTION 
F F M = N : G  

This axiomatisation of propositional equality is the one used in Martin-Lhf's 
earlier works [8] and in many proof-theoretic studies on his type theories. The 
type theory based on this axiomatisation is called extensional type theory, TTE 
for short, because by rule REFLECTION the judgemental equality becomes ex- 
tensional. For instance, since as argued above x:N F IdN(x, Suc~(O)) true we 
obtain by REFLECTION that x:N F x = Suc~(O) : N which clearly is an exten- 
sional equality. 

Equality reflection (REFLECTION) is intuitively appealing because it is valid 
in most models, in particular in the set-theoretic interpretation of type theory, 
and also because it leads to a single notion of equality in type theory. A serious 
disadvantage of extensional type theory is that judgemental equality and as a 
consequence type checking, i.e. the question whether a given judgement F F 
M = N : o- or F F M : G holds, are undecidable. Intuitively, this is so, because a 
syntax-directed decision procedure for these judgements would have to "guess" 
the proof term P in the premise to rule REFLECTION. As any H1 ~ statement 
in Heyting arithmetic can be encoded as a certain identity type, inhabitation 
of identity types is at least as complex as provability of such statements. A 
rigorous proof of undecidability using recursively inseparable sets is given in [6]. 
Therefore, extensional type theory is not really in line with the Curry-Howard 
isomorphism because terms do not correspond to proofs, only typing derivations 
do. Other shortcomings of extensional type theory are that in the presence of a 
universe U non-normalising terms become typeable in inconsistent contexts (for 
example the fixpoint combinator may be typed in d: U,p: Idu(d, d--+ d)) and--  
of a more aesthetic nature--that rule REFLECTION does not fit into the pattern 
of introduction and elimination rules. See, however, [10] for a formulation of 
REFLECTION as a n  ~?-like rule. 
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Probably for these reasons Martin-Lhf has later on restricted judgemental 
equality to definitional expansion (definitional equality) and replaced rules ID- 
UNI and REFLECTION by his famous identity elimination rule which is motivated 
by the view of the identity type as an inductive family with sole constructor Refl. 

The use of this elimination principle is described in detail in [9]. It is shown 
there, how it entails that  propositional equality satisfies a Leibniz principle, that 
is if x: ~r F r[x] type and P : Idc,(M1, M2) and N : rIM1] then one can construct a 
term Subst o,r (M1, M2, P, N) : rIM2]. This Leibniz principle in turn allows one to 
show that  propositional equality is an equivalence relation, i.e. if P : Id(M1, M2) 
then we can construct Sym (P) : Id(M2, M1) and for Q : Id(M2, M3) we get 
Trans (P, Q) : Id(M1, M3). Furthermore, it entails that Id is respected by all 
functions, i.e. if U : a --+ r then we find Resp (U, P) : Id(F M1, F 312). 

Surprisingly, the intensional and extensional formulations of type theory have 
never been compared in the literature (to the best of our knowledge). This is the 
purpose of the present work. We first identify two principles which are provable 
in the extensional theory, but not in the intensional one and then embark on the 
proof that  extensional type theory is conservative over the intensional one with 
these two principles added. We only sketch the formal argument here and refer 
the reader to [6] for a detailed proof. 

We use a monomorphic presentation of type theory, i.e. terms with explicit 
type annotations, as in [9, Part III], however, without using a so-called Logical 
Framework, see also Sect. 3. 

The material in this paper is mostly taken from the author's PhD dissertation 
[6]. However, some simplifications (in particular the assumption of q-conversion 
for H-types) have been made, and the example in Section 2 is new. 

1.1 F u n c t i o n a l  e x t e n s i o n a l i t y  

Suppose that  F t- U, V : Hx: m'r and / ' ,  x: c~ ~- P : Idr (U x,  V x). In extensional 
type theory we can conclude _P b- Idll=:~.~(U, V) true using REFLECTION, the 
congruence rule for A, and ~/. In intensional type theory this is, however, in 
general not possible. A formal semantic argument for this may be found in [10]; 
intuitively one may argue that  otherwise in the special case where F is empty 
we could deduce Idg=:a.r(U, V) true (from the existence of P above), but an 
identity type in the empty context can only be inhabited by a canonical element 
Refl(-), so U and V must be definitionally equal, which does not follow from 
the existence of the proof P which may have been obtained using induction. To 
achieve this principle called functional extensionality we add to intensional type 
theory a family of constants Ext~,,r (U, V, P) obeying the rule 

1" ~- U, V : H x :  ~r.r 
F,x:c~ F P: IdT(U x ,V  x) 

r (v, v, P): Idn :o.,(U, V) 
EXT-FORM 
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1.2 Uniqueness  of  ident i ty  

Let M, N : a and P, Q : Ida(M, N) be two proofs that M, N are propositionally 
equal. In extensional type theory it is an immediate consequence of ID-UNI that 
Idxd,(M,N)(P,Q) true. Streicher has conjectured in [10] that this is in general 
not the case in intensional type theory and in [7] this has actually been proved 
by a semantic argument. So again, we are led to extend our axiomatisation of 
propositional equality in an intensional setting. It turns out that it is enough to 
consider the case where Q is in canonical form so that we introduce a family of 
constants 

r ~- M : rr t ~ F- P : Ida (M, M) 

F F" IdUnia(M,P):  Idzd~(M,M)(P, Refla(M)) 
ID-UNI-I 

to achieve uniqueness of identity. Axioms like ExT-FORM and ID-UNI-I intro- 
duce non-canonical elements of all types in the empty context (not only of iden- 
tity types). The constant ID-UNI-I can be endowed with an obvious reduction 
rule which eliminates all of its instances in closed terms of basic type. Things 
are more serious with EXT-FORM since no reasonable reduction rule for these 
constants is known. However, in [5] we discuss a possibility for eliminating these 
non-canonical elements by translating the identity type into suitable equivalence 
relations. For the present work we shall simply regard Ext and IdUni as families 
of constants. 

1.3 The  intensional  t y p e  t heo ry  TTs  

It is also noticed in [10] that in the presence of uniqueness of identity the elim- 
ination operator for Id can be defined in terms of its particular instance Subst 
mentioned above. Therefore, we shall take Subst as a primitive and define inten- 
sional type theory (TTz for short) as dependent type theory with rules ID-FORM, 
ID-INTRO, EXT-FORM, ID-UNI-I, and the following two rules for Subst. 

r P : ida (M1, M2) 

1" t- Subst a,T (M1, M=, P, N) : r[M2] 
LEIBNIZ 

F ~- Subst a,r (M, M, Refla (M), N) : riM] LEIBNIZ-COMP 
I" F Subst a,r(M, M, Refl~(M), N) = ~ ' :  v[M] 

Recall that TTE refers to extensional type theory defined by rules ID-UNI and 
REFLECTION above. Recall also that from Subst one may define operators Sym, 
Trans, and Resp, witnessing that Id is an equivalence relation compatible with 
function application. 

In order to distinguish the intensional from the extensional type theory we 
write F-t and t-~ for the two respective judgement relations. 
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The operators of TTz are definable in TTE, for example Subst is simply the 
identity in TTE.  More formally, we can define a "stripping map" I - I by 

ISubst a,r(M1, M2, P, N)I :-- INj 
IIdUni a(M, P)I := Refl~dl.l(IMI,IMI)(ReflIGl(IMI)) 
[Exto,~(U, V, P)l := ReflII=:lol.l~l(IUI) 
homomorphically extended to all other terms, types, contexts, and judgements 

Notice that F = IF] if F does not contain Subst, Ext, or IdUni. This mapping 
enjoys the following trivial soundness property 

P r o p o s i t i o n  I If F t-z J then IF] t-E IJI for all contexts F and judgements J. 

2 Conservativity of TTE over TTI 

We are now interested in a converse of the above proposition; more precisely, we 
shall establish the following conservativity property. 

T h e o r e m  2 If F ks ~r type and jFJ ~-E M : Ic~[ for some M then there exists 
M' such that F ~-s M' : ~r. 

Before sketching the proof of this theorem we shall illustrate its strength by an 
example suggested by Thomas Schreiber. The crux of this example is to show 
how the lack of equality reflection in TTI  can be inconvenient when one wants to 
actually program with dependent types rather than use type dependency merely 
to express constructive predicate logic. 

We assume a type Bool with two canonical elements true : Bool and false : 
Bool. We use the following slightly unconventional elimination rule which is 
expressible in terms of the usual one, see [9, Ch. 21] 

F, b: Bool I- cr type 
F F- B : Bool 
17, p: Idsool(B, true) b T :  or[true~b] 
F,p: Idsoot(B, false) k E :  o'[false/b] 

BOoL-E 
F F- if'[b:BooJ]a (B, [p: IdBoo,(B, true)]T, [p: IClBoo,(B, false)]E) : cr[B/b] 

Notice that the free variables b in ~ and p in T, E,  respectively, become bound 
in the if t expression. This elimination operator comes with the following two 
computation rules: 

F ~-if'[b:Boo0o (true, [p: IdSoo,(true, true)]T, [iv: IdBoo,(true, false)]E): c[true/b] 

/ '  J- if'[b:BooOa (true, [p: IdBool(true; true)]T, [p: IdBool(true, false)]E) -- 
T[ReflBool(true)/p]: or[true/b] BOOL-C-T 

F ~- if'[b:Boo0a (false, [p: IdBool(false, true)]T, [p: IdBool(false, false)]E) : (r[false/b] 

F F if'[b:Bool]a(false, [p: IdBoot(false, true)]T, [p: IdBoo,(false, false)]E) -- 
E[Reftsoo,(false)/p]:  [false/b] BooL-C-F 
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Suppose that  we are given a type Loc of locations together with an equality 
function eq : Loc -+ Loc -+ Boot and a proof term 

eq_correct : I I l ,  l': koc.tdLoc(1, l') ++ Idsool(eq I 1 ~, true) 

witnessing that eq is indeed an equality function on Loc. The terms eq and 
eq_correct may either be implemented or declared in some ambient context 
F.  Furthermore, we assume a type Data depending on Loc, i.e. we have F ~- 
Data(M) type whenever/~ F- M : Loc. We make the definition 

Store = I I l :  Loc.Data(l) 

and our aim is to find a term 

update : Hl0: Loc.Hd: Data(10).]-Is: Store.Store 

which given lo, d, s returns a store whose value at l0 equals d and (s l) at 1 r 10. 
In TTE we can easily construct such an update function by 

update = )~10: Loc.~d: Data(10).),s: Store.hi: Loc. 
ifl[b:BooqData(1) (eq (lo, l) 

[p: IdBool(eq(lo, l), true)]d, 
[p: Z Boo,(eq(10, l), fal,e)](  l)) 

The important point here is that in TTE we have Data(/0) = Data(1) in the pres- 
ence of p: Id(eq(lo, 1), true) by virtue of eq_correct. Therefore, we have d: Data(1) 
and the first branch of the if ~ expression type-checks. 

Write 

update_type = Hlo: Loc.Hd: Data(lo ).1-Is: Store.Store 

and for f:  update_type 

update_spec(f) = 
(Hl0: Loc.Hd: Data(lo).Hs: Store.IdData(to)(f lo d s lo , d)) • 
(IIIo: Loc.//d: Data(lo).IIl: Loc.(IdLor Io) -~ 2_) -+ IdD,t,(;)(f lo d 8 l ,  s l)) 

where .1_ is the empty type. We can readily establish 

F I- E update_spec(update) true 

using if' and equality reasoning. 
Now assuming that Loc and Data already make sense in intensiona] type 

theory we can apply the conservativity theorem to the type 

-- 27f: update_type.update_spec(f) 

giving us an update function in TTx which also satisfies update_spec. Coming 
up with such a function is not too difficult, indeed we may choose 
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update'= A/o: Loc.Ad: Data(/o).As: Store.M: Loc. 
ifl[b:Boo~Data(/) (eq (10, l) , 

~v: IdBoo,(eq(lo,/), true)]Subst Loc, Oata(/O, l ,  ((eq_correct lo 1).2 p) ,  d), 
~: IdBoo,(eq(lo, 1), false)] (s 1)) 

where the projection .2 yields the +--part of eq_correct, hence the first argument 
to Subst is of type Idkoc(lo, l). The conservativity theorem does not necessarily 
give us this very update function, but we can also use it to obtain a proof of 
correctness of the latter. To that end we consider the type 

o" = update_spec(update') 

We have = update_spec(update) so F t-E true and hence 1" FI cr true 
giving us the desired correctness proof for our particular function update ~. Con- 
structing such proof directly requires quite some effort as the function in question 
contains an instance of Subst. In this case the author has been able to construct 
such a proof using the Lego system. This revealed that the use of Ext can be 
avoided here and that IdUni is only used for the particular type Loc. As ob- 
served by Michael Hedberg IdUni is definable from Martin-LSf's elimination 
rule for types with decidable equality (such as koc) so that this example can be 
carried out in pure intensional Martin-LSf type theory without the additional 
constants Ext and IdUni. 

It was pointed out by one of the referees that in the presence of pattern- 
matching like in ALF [1] the complicated equality reasoning in the example can 
be avoided if one replaces eq and eq_correct by a single constant 

eq ' :  H1, l': Loc.IdLoc(I, l') + (IdLoc(l, l') -+ Z) 

One may then define update by pattern matching over eq' (t, 10) and in the positive 
case we may then assume that l and l0 are judgementally equal. It is not clear, 
however, how this technique can be applied in general, in particular, the example 
in [6] and briefly mentioned in Section 3 does not seem to be amenable to a simple 
development using pattern-matching. 

Proof of Thin. 2 (Sketch). The proof is based on two main ingredients. First, we 
observe that a consequence of this conservativity property is that types c~ and 
# which are equal in TTE must be isomorphic in TTz. To see this consider the 
type 

p := Z f :  ~ ~ # . ~ f - l :  # _+ cr. 
Id(Ax: Ax: • Id(A : 

If }-E Icq = Ic~'l then IPl is inhabited by two instances of the identity function 
together with two instances of reflexivity. So a proof of Theorem 2 must embody 
a construction of these isomorphisms. Now the only way to deduce judgemental 
type equalities in TTE is by using congruence rules and REFLECTION in the case 
of type formers containing terms like the identity type. So we can compute these 
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isomorphisms directly by induction on the structure of any two types ~ and ~r' 
without using conservativity in the first place. 

The second ingredient is a general method for establishing conservativity 
between type theories. Generalising from Thm. 2 we call an extension T ~ of 
some type theory T conservative over T if whenever a type of T is inhabited in 
T ~ then it is already inhabited in T. 

P r o p o s i t i o n  3 Let T be a type theory and T ~ an extension of T.  T ~ is conser- 
vative over T if and only if there exists a model Q of T' ,  hence o f T ,  such that 
the interpretation of T in this model is full (surjective). 

Proof. Suppose that cr is a type of T such that cr is inhabited in T ~ by some term 
M. The interpretation of M in Q yields a "semantic term" of the interpretation 
of a in Q which by fullness gives a term of type cr in T. For the converse we let 
Q be the term model of T ~ 

At this level of generality the argument is too informal so as to be of direct use. 
It only serves us as a guideline which the reader is invited to bear in mind. The 
theories T and T ~ are TTI  and TTE, respectively, where a slight complication 
results from the fact that  TTE is not literally an extension of TTz, but that  we 
have an interpretation of one in the other, namely the stripping map. The role of 
"models" is played by categories with families in the sense of Dybjer [2, 4] or any 
other category-theoretic notion of model for type theory. For the purpose of this 
abstract it suffices to know that such a structure provides domains of interpre- 
tation for contexts, types, and terms 1, and comes with semantic type and term 
formers operating on these semantic objects. An interpretation function can then 
be defined which maps syntactic contexts, types, terms to their semantic com- 
panions and translates syntactic type and term formers into the corresponding 
semantic ones. Judgemental equality is then modelled by set-theoretic equality 
of semantic objects. Factoring the syntax by judgemental equality yields a par- 
ticular mode]: the term model  The interpretation of the syntax in a some model 
induces a unique structure preserving map from the term model to this model. 
The model Q we use is a quotient of the term model of TTz by propositional 
equality where in addition we identify types and contexts which are canonically 
isomorphic in the sense described above, i.e. which become equal in TTE. 

Let us now look at some of the details. In order to define the canonical 
isomorphisms between types one also needs to consider isomorphisms between 
contexts to get the inductive definition through. In order to specify those we 
extend propositional equality to contexts and context morphisms (substitutions) 
using Z-types. It turns out that for this extension the same combinators as for 
ordinary propositional equality can be defined. Then by simultaneous induction 
on contexts and types we construct possibly undefined "isomorphism candidates" 
between any two contexts and types. That  is, for contexts F,  A we have a 
(possibly undefined) context morphism (a I~]-tuple of terms) cor, a : Y -4 A 

1 ...  and substitutions~ but we gloss over this point here. 
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which if defined possesses an inverse up to propositional equality. For types 
F ~'s c~ type, A F- I r type we have a (possibly undefined) term 

r,x:  r[cor, a] 

which--if  defined--is an isomorphism w.r.t, propositional equality. We use square 
brackets to denote (generalised) substitution, i.e. if f : F -4 A and A F- ~r type 
then F t- ~r[f] type and similarly for other judgements. The isomorphism be- 
tween contexts of different length is always undefined and between contexts of 
the same length it is obtained from the isomorphisrns between types. An iso- 
morphism between types can only be defined if they share the same outermost 
type former. In the case of ]7 and Z-types the isomorphism is the obvious lifting 
of the isomorphism for the respective components. Functional extensionality is 
used to verify the isomorphism property in the case of / / - types .  The interesting 
case is where r and 7- are identity types. For simplicity we assume that they are 
both in the same context and over the same type. I.e. let F ~-z M1, M~, N1, N2 : p 
and put o" = Idp(M1, M2) and r = Idp(N1, N2). The isomorphism 

F,p: Idp(M1, M2) Fz tyr, r,a,r : Idp(N1, N2) 

is defined iff M1, N1 and M2, N2 are propositionally equal. In this case we pick 
F ~z P1 : Idp(M1, NI) and F t-z P2 : Idp(M2, N2) and set 

tyr, r, os[p ] := Trans ( Trans ( Sym ( P1) , P ) , P~ ) 

Notice that  in this case ty is defined w.r.t, some arbitrary choice of these proofs 
Pi. The isomorphism property is readily established using IdUni. 

Having defined these isomorphisms we construct a model of TTE in which 

- contexts are equivalence classes of contexts, two contexts being identified if 
the isomorphism between them is defined, 

- types in context [A]~ are equivalence classes of pairs (F, o') where F E [A]~, 
and F Fz cr type, and two such pairs are identified if the corresponding 
ty-isomorphism is defined, 

- terms of type [(A, r)]~ are equivalence classes of triples (F, M,~r) where 
(F, or) e [(A, r)]~, and F ~-I M : o', and two such triples (F, M, cr) and 
(/7 I, N I, (r I) are identified if 

F F- Ido,(tyr, r,,~,a,[M], M'[cor, r,]) true 

i.e., if M and M ~ with suitably adjusted source and target are propositionally 
equal in TTI .  

We have used here the notation [-]~ for equivalence classes associated to a 
representative. 

Now we prove that this structure, which we call Q, does indeed form a model 
of T T z  and that in particular the required semantic type and term formers are 
given by applying their syntactic companions (in TTz) to equivalence classes. 
Here Ext and IdUni are used to show that various settings are independent of 
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the choice of representatives and thus are well-defined on equivalence classes. For 
example, if [(/~, M, cr)]~ and [(F', N', o")]~ are two semantic terms of (semantic) 
type [(A G)]~ then we define the associated identity type as the equivalence 
class of the pair of F and 

F F Id~,(tyr,r,G,o,[M], M'[cor, r,]) type 

Since we have defined equality of terms in Q precisely as inhabitedness of this 
type the rule REFLECTION is valid in Q. Uniqueness of identity is required here 
to show that this setting is independent of the chosen representatives (F, M, ~r) 
and (F', N', G'). 

The above can be summarised by the following diagram of structure preserv- 
ing maps between models. 

q 

TT/ , TTE 
I-I 

where TTI and TTz refer to the term models of the respective type theories. 
[[-]]z and i-lIE denote the interpretations of TTz and TTE in Q, which being 
a model for TTE also models TTz. Finally, [-]~ : TTI --+ Q is the projection 
map associating equivalence classes which is structure preserving by definition 
of Q. 

By induction on derivations or--more elegantly--by an initiality argument 
we find that all three structure preserving maps from TTI to Q are equal, more 
precisely, we have 

[-]~ : [-]1 = [--]E ~ I - I  (1) 
Intuitively, we can now argue that the interpretation of TTz in Q is surjective 
because we have characterised it as the projection associating equivalence classes 
and then apply Prop. 3. More formally, suppose that f t-z o" and Ill  t-S M : IGI. 
Let iMps = [(f ' ,  M', G')]~ be the interpretation of M in Q. By definition, we 
have F '  FI M' : W. Moreover, by Eqn. 1 we find 

It]~ : I [ I r l ]b  : [r% 

and 
[(_r', o-)]. : [ l ( r ,  o-)lib : [ ( r ' ,  o3]~ 

This in turn implies that cop,r, and tyr,r, ~,,o, are defined. Therefore, we have 

P F I ty- lr ,  r,,,,a,[M'[cor,r,]] : G 

giving the desired inhabitant of o" in TTz. [] 
We remark that we can even show that the stripping of the thus constructed 

inhabitant of c~ is equal to M in TTE by showing that the stripping map respects 
the equality in Q and thus lifts to a structure preserving map from Q to TTE 
which again by initiality must be a left inverse to [--~E" We refer to [6] for details. 
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3 D i s c u s s i o n  

Although relatively complex, the described method is fairly robust w.r.t, exten- 
sions of the type theory. For it to be extensible to a new type former it is enough 
that this type former admits an action on propositional isomorphisms. In [6] we 
demonstrate this by adding quotient types and a universe. We remark, however, 
that this condition is not met in the presentation of type theory using the Logi- 
cal Framework in the sense of [9, Part III]. The reason is that there we can have 
variables of type Set  --+ Se t  which act as completely unspecified type formers. 
Nevertheless, it is plausible that Thin. 2 continues to hold in this case. A possible 
proof could use a one-step definition of the isomorphism candidates by which 
for example the isomorphism tyr, r,a, r would be defined iff there exists a context 
A, a type p, and context morphisms f , g  : F -+ A such that F }-z cr = Pil l ,  
F }-I r = pig], and f,  g are (component-wise) propositionally equal. We leave 
the details to a future paper. 

We also point out the non-constructive nature of the proof. Not only has the 
axiom of choice been used in the definition of the canonical isomorphisms co and 
ty; more seriously the interpretation of TTE in Q associates equivalence classes 
to contexts, types, and terms. In order to get an inhabitant of type ~r in the proof 
above we must arbitrarily choose a representative of the corresponding class. 
We have done so implicitly by writing [[M]] E = [(F/, M', ~')]~. So the present 
proof does not directly give rise to an algorithm which effectively computes an 
inhabitant of tr from a derivation of Io-I true in TTz. Now such algorithm trivially 
exists by Markov's principle, that is we simply try out all possible terms and 
derivations and from the non-constructive proof of existence we know that this 
search always succeeds. But of course, one would like a more efficient algorithm 
which makes use of the given derivation in TT~. It is, however, not clear whether 
the described argument gives rise to one such. An idea would be to carry out the 
construction of Q in some "setoid model" where quotients come with a canonical 
choice of representatives. This is, however, not possible using a semantics which 
interprets judgemental equality as set-theoretic extensional equality as we have 
done. 

It appears that a constructivisation of the result could give rise to tactics 
facilitating theorem proving in TTz, the idea being that parts of a proof or 
program development could be carried out in TTE. The resulting derivation 
would then be automatically translated into TTI. In [6] we give a proof in TTE 
of a theorem of Mendler's stating that the dependent sum (Z) preserves limits of 
~v-chains. Although the proof in TTE is relatively straightforward it was despite 
considerable effort so far not possible to obtain a fully formal development in 
TTI. The reason was that in this case one has to prove a property about a 
term which contains instances of Subst  inside a primitive recursion over natural 
numbers rather than just booleans as in the case of the update function above. 
Given sufficient time and energy one could certainly push this proof through, 
but a systematic treatment based on the conservativity result would seem to 
save much work in such cases. 

We remind the reader that the conservativity result applies to intensional 
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type theory with functional extensionality and uniqueness of identity added. 
Another issue is the conservativity of the latter two over pure intensional type 
theory or rather the characterisation of those types and contexts for which they 
are conservative. This question remains unanswered and is left for future re- 
search. A brief discussion of the topic may be found in [6]. 

Judgemental equality has played a minor role in the present proof and it 
appears that the whole development would go through if TTI was replaced by a 
type theory without judgemental equality at all and rules like t3 or LEIBNIZ- 
COMP replaced by corresponding constants of identity types in the style of 
IDUNI. The construction of the model Q would remain unchanged since propo- 
sitionally equal objects are identified in Q, some care has to be taken, however, 
with the extension of propositional equality to contexts. 

This generalisation would also answer affirmatively the question of conser- 
vativity of the original TTI over this new type theory without judgemental 
equality. 
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